What are the advantages of nanomaterials

Nanomaterials can be defined as materials possessing, at minimum, one external dimension measuring 1-100nm. The definition given by the European Commission states that the particle size of at least half of the particles in the number size distribution must measure 100nm or below.

Nanomaterials can occur naturally, be created as the by-products of combustion reactions, or be produced purposefully through engineering to perform a specialized function. These materials can have different physical and chemical properties to their bulk-form counterparts.

What are the uses of Nanomaterials?

Due to the ability to generate the materials in a particular way to play a specific role, the use of nanomaterials spans across various industries, from healthcare and cosmetics to environmental preservation and air purification.

The healthcare field, for example, utilizes nanomaterials in a variety of ways, with one major use being drug delivery. One example of this process is whereby nanoparticles are being developed to assist the transportation of chemotherapy drugs directly to cancerous growths, as well as to deliver drugs to areas of arteries that are damaged in order to fight cardiovascular disease. Carbon nanotubes are also being developed in order to be used in processes such as the addition of antibodies to the nanotubes to create bacteria sensors.

In aerospace, carbon nanotubes can be used in the morphing of aircraft wings. The nanotubes are used in a composite form to bend in response to the application of an electric voltage.

Elsewhere, environmental preservation processes make use of nanomaterials too – in this case, nanowires. Applications are being developed to use the nanowires – zinc oxide nanowires- in flexible solar cells as well as to play a role in the treatment of polluted water.

Examples of Nanomaterials and the Industries they are used in:

The use of nanomaterials is prevalent in a wide range of industries and consumer products.

In the cosmetics industry, mineral nanoparticles – such as titanium oxide – are used in sunscreen, due to the poor stability that conventional chemical UV protection offers in the long-term. Just as the bulk material would, titanium oxide nanoparticles are able to provide improved UV protection while also having the added advantage of removing the cosmetically unappealing whitening associated with sunscreen in their nano-form.

The sports industry has been producing baseball bats that have been made with carbon nanotubes, making the bats lighter therefore improving their performance. Further use of nanomaterials in this industry can be identified in the use of antimicrobial nanotechnology in items such as the towels and mats used by sportspeople, in order to prevent illnesses caused by bacteria.

Nanomaterials have also been developed for use in the military. One example is the use of mobile pigment nanoparticles being used to produce a better form of camouflage, through injection of the particles into the material of soldiers’ uniforms. Additionally, the military has developed sensor systems using nanomaterials, such as titanium dioxide, that can detect biological agents.

The use of nano-titanium dioxide also extends to use in coatings to form self-cleaning surfaces, such as those of plastic garden chairs. A sealed film of water is created on the coating, and any dirt dissolves in the film, after which the next shower will remove the dirt and essentially clean the chairs.

Advantages of Nanomaterials

The properties of nanomaterials, particularly their size, offer various different advantages compared to the bulk-form of the materials, and their versatility in terms of the ability to tailor them for specific requirements accentuates their usefulness. An additional advantage is their high porosity, which again increases the demand for their use in a multitude of industries.

In the energy sector, the use of nanomaterials is advantageous in that they can make the existing methods of generating energy – such as solar panels – more efficient and cost-effective, as well as open up new ways in which to both harness and store energy.

Nanomaterials are also set to introduce a number of advantages in the electronics and computing industry. Their use will permit an increase in the accuracy of the construction of electronic circuits on an atomic level, assisting in the development of numerous electronic products.

The very large surface-to-volume ratio of nanomaterials is especially useful in their use in the medical field, which permits the bonding of cells and active ingredients. This results in the obvious advantage of an increase in the likelihood of successfully combatting various diseases.

Media Contact
Company Name: Shanghai Runwu Chemical Technology Co., Ltd.
Contact Person: Media Relations
Email: Send Email
Phone: +86-21-34786101
Country: China
Website: https://www.rwchem.com/